The structure of nonlinear Lie derivation on von Neumann algebras
نویسندگان
چکیده
منابع مشابه
Nonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولnonlinear $*$-lie higher derivations on factor von neumann algebras
let $mathcal m$ be a factor von neumann algebra. it is shown that every nonlinear $*$-lie higher derivation$d={phi_{n}}_{ninmathbb{n}}$ on $mathcal m$ is additive. in particular, if $mathcal m$ is infinite type $i$factor, a concrete characterization of $d$ is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2012
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.11.009